Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Am Heart J ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484963

RESUMO

BACKGROUND: Preeclampsia is associated with a two-fold increase in a woman's lifetime risk of developing atherosclerotic cardiovascular disease (ASCVD), but the reasons for this association are uncertain. The objective of this study was to examine the associations between vascular health and a hypertensive disorder of pregnancy among women ≥ 2 years postpartum. METHODS: Pre-menopausal women with a history of either a hypertensive disorder of pregnancy (cases: preeclampsia or gestational hypertension) or a normotensive pregnancy (controls) were enrolled. Participants were assessed for standard ASCVD risk factors and underwent vascular testing, including measurements of blood pressure, endothelial function, and carotid artery ultrasound. The primary outcomes were blood pressure, ASCVD risk, reactive hyperemia index measured by EndoPAT and carotid intima-medial thickness. The secondary outcomes were augmentation index normalized to 75 beats per minute and pulse wave amplitude measured by EndoPAT, and carotid elastic modulus and carotid beta-stiffness measured by carotid ultrasound. RESULTS: Participants had a mean age of 40.7 years and were 5.7 years since their last pregnancy. In bivariate analyses, cases (N = 68) were more likely than controls (N = 71) to have hypertension (18% vs 4%, P = .034), higher calculated ASCVD risk (0.6 vs 0.4, P = .02), higher blood pressures (systolic: 118.5 vs 111.6 mm Hg, P = .0004; diastolic: 75.2 vs 69.8 mm Hg, P = .0004), and higher augmentation index values (7.7 vs 2.3, P = .03). They did not, however, differ significantly in carotid intima-media thickness (0.5 vs 0.5, P = .29) or reactive hyperemia index (2.1 vs 2.1, P = .93), nor in pulse wave amplitude (416 vs 326, P = .11), carotid elastic modulus (445 vs 426, P = .36), or carotid beta stiffness (2.8 vs 2.8, P = .86). CONCLUSION: Women with a prior hypertensive disorder of pregnancy had higher ASCVD risk and blood pressures several years postpartum, but did not have more endothelial dysfunction or subclinical atherosclerosis.

3.
Int J Gynecol Pathol ; 43(1): 15-24, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811832

RESUMO

SUMMARY: We reviewed the clinicopathologic findings of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed placentas at our institution. We identified patients diagnosed with SARS-CoV-2 during pregnancy (March-October 2020). Clinical data included gestational age at diagnosis and delivery and maternal symptoms. Hematoxylin and eosin slides were reviewed for maternal vascular malperfusion, fetal vascular malperfusion, chronic villitis, amniotic fluid infection, intervillous thrombi, fibrin deposition, and infarction. Immunohistochemistry (IHC) for coronavirus spike protein and RNA in situ hybridization (ISH) for SARS-CoV-2 was performed on a subset of blocks. A review of placentas from age-matched patients received March-October 2019 was conducted as a comparison cohort. A total of 151 patients were identified. Placentas in the 2 groups were similar in weight for gestational age and had similar rates of maternal vascular malperfusion, fetal vascular malperfusion, amniotic fluid infection, intervillous thrombi, fibrin deposition, and infarction. Chronic villitis was the only significantly different pathologic finding between cases and controls (29% of cases showed chronic villitis vs. 8% of controls, P <0.001). Overall, 146/151 (96.7%) cases were negative for IHC and 129/133 (97%) cases were negative for RNA ISH. There were 4 cases that stained positively for IHC/ISH, 2 of which showed massive perivillous fibrin deposition, inflammation, and decidual arteriopathy. Coronavirus disease 2019 (COVID-19)-positive patients were more likely to self-identify as Hispanic and more likely to have public health insurance. Our data suggests SARS-CoV-2 exposed placentas that stain positively for SARS-CoV-2 show abnormal fibrin deposition, inflammatory changes, and decidual arteriopathy. The group of patients with clinical COVID-19 are more likely to show chronic villitis. IHC and ISH evidence of viral infection is rare.


Assuntos
COVID-19 , Placenta , Gravidez , Humanos , Feminino , Placenta/patologia , COVID-19/patologia , SARS-CoV-2 , RNA , Infarto/patologia , Fibrina
4.
Curr Hypertens Rep ; 26(4): 175-182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147201

RESUMO

PURPOSE OF REVIEW: This review summarizes the potential of cell-free nucleic acids for predicting preeclampsia, contrasts them with other methods, and discusses these findings' relevance to preeclampsia's pathogenesis and care. RECENT FINDINGS: Recent studies have demonstrated the utility of cell-free nucleic acids in early preeclampsia risk prediction. Encouragingly, nucleic acid measurement exhibits similar or better sensitivity as compared to standard screening assays and furthermore sheds light on preeclampsia's underlying placental biology. Over the past decade, liquid biopsies measuring cell-free nucleic acids have found diverse applications, including in prenatal care. Recent advances have extended their utility to predict preeclampsia, a major cause of maternal mortality. These assays assess methylation patterns in cell-free DNA (cfDNA) or gene levels in cell-free RNA (cfRNA). Currently, preeclampsia care focuses on blood pressure control, seizure prevention, and delivery. If validated, early prediction of preeclampsia through liquid biopsies can improve maternal health and deepen our understanding of its causes.


Assuntos
Ácidos Nucleicos Livres , Hipertensão , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Ácidos Nucleicos Livres/genética , Placenta , Pressão Sanguínea
5.
medRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961706

RESUMO

Mammalian cardiac muscle is supplied with blood by right and left coronary arteries that form branches covering both ventricles of the heart. Whether branches of the right or left coronary arteries wrap around to the inferior side of the left ventricle is variable in humans and termed right or left dominance. Coronary dominance is likely a heritable trait, but its genetic architecture has never been explored. Here, we present the first large-scale multi-ancestry genome-wide association study of dominance in 61,043 participants of the VA Million Veteran Program, including over 10,300 Africans and 4,400 Admixed Americans. Dominance was moderately heritable with ten loci reaching genome wide significance. The most significant mapped to the chemokine CXCL12 in both Europeans and Africans. Whole-organ imaging of human fetal hearts revealed that dominance is established during development in locations where CXCL12 is expressed. In mice, dominance involved the septal coronary artery, and its patterning was altered with Cxcl12 deficiency. Finally, we linked human dominance patterns with coronary artery disease through colocalization, genome-wide genetic correlation and Mendelian Randomization analyses. Together, our data supports CXCL12 as a primary determinant of coronary artery dominance in humans of diverse backgrounds and suggests that developmental patterning of arteries may influence one's susceptibility to ischemic heart disease.

6.
Nature ; 619(7970): 595-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468587

RESUMO

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Assuntos
Troca Materno-Fetal , Trofoblastos , Útero , Feminino , Humanos , Gravidez , Artérias/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Decídua/imunologia , Decídua/fisiologia , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/fisiologia , Útero/irrigação sanguínea , Útero/citologia , Útero/imunologia , Útero/fisiologia , Troca Materno-Fetal/genética , Troca Materno-Fetal/imunologia , Troca Materno-Fetal/fisiologia , Fatores de Tempo , Proteômica , Perfilação da Expressão Gênica , Conjuntos de Dados como Assunto , Idade Gestacional
7.
Sci Adv ; 9(21): eade7692, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224249

RESUMO

Preterm birth (PTB) is the leading cause of death in children under five, yet comprehensive studies are hindered by its multiple complex etiologies. Epidemiological associations between PTB and maternal characteristics have been previously described. This work used multiomic profiling and multivariate modeling to investigate the biological signatures of these characteristics. Maternal covariates were collected during pregnancy from 13,841 pregnant women across five sites. Plasma samples from 231 participants were analyzed to generate proteomic, metabolomic, and lipidomic datasets. Machine learning models showed robust performance for the prediction of PTB (AUROC = 0.70), time-to-delivery (r = 0.65), maternal age (r = 0.59), gravidity (r = 0.56), and BMI (r = 0.81). Time-to-delivery biological correlates included fetal-associated proteins (e.g., ALPP, AFP, and PGF) and immune proteins (e.g., PD-L1, CCL28, and LIFR). Maternal age negatively correlated with collagen COL9A1, gravidity with endothelial NOS and inflammatory chemokine CXCL13, and BMI with leptin and structural protein FABP4. These results provide an integrated view of epidemiological factors associated with PTB and identify biological signatures of clinical covariates affecting this disease.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Criança , Humanos , Feminino , Nascimento Prematuro/epidemiologia , Países em Desenvolvimento , Multiômica , Proteômica , Quimiocinas CC
8.
Front Allergy ; 4: 1149008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034151

RESUMO

The prevalence of food allergy continues to rise globally, carrying with it substantial safety, economic, and emotional burdens. Although preventative strategies do exist, the heterogeneity of allergy trajectories and clinical phenotypes has made it difficult to identify patients who would benefit from these strategies. Therefore, further studies investigating the molecular mechanisms that differentiate these trajectories are needed. Large-scale omics studies have identified key insights into the molecular mechanisms for many different diseases, however the application of these technologies to uncover the drivers of food allergy development is in its infancy. Here we review the use of omics approaches in food allergy and highlight key gaps in knowledge for applying these technologies for the characterization of food allergy development.

9.
Allergy ; 78(1): 244-257, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993851

RESUMO

BACKGROUND: The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS: Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS: Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION: These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.


Assuntos
Dermatite Atópica , Criança , Lactente , Humanos , Feminino , Gravidez , Pré-Escolar , Dermatite Atópica/epidemiologia , Dermatite Atópica/genética , Estudos Prospectivos , Fatores de Risco , Família , Transcriptoma
10.
Patterns (N Y) ; 3(12): 100655, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36569558

RESUMO

Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia.

11.
Cells ; 11(21)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359823

RESUMO

Preeclampsia is a pregnancy-specific disorder involving placental abnormalities. Elevated placental Sialic acid immunoglobulin-like lectin (Siglec)-6 expression has been correlated with preeclampsia. Siglec-6 is a transmembrane receptor, expressed predominantly by the trophoblast cells in the human placenta. It interacts with sialyl glycans such as sialyl-TN glycans as well as binds leptin. Siglec-6 overexpression has been shown to influence proliferation, apoptosis, and invasion in the trophoblast (BeWo) cell model. However, there is no direct evidence that Siglec-6 plays a role in preeclampsia pathogenesis and its signaling potential is still largely unexplored. Siglec-6 contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an ITIM-like motif in its cytoplasmic tail suggesting a signaling function. Site-directed mutagenesis and transfection were employed to create a series of Siglec-6 expressing HTR-8/SVneo trophoblastic cell lines with mutations in specific functional residues to explore the signaling potential of Siglec-6. Co-immunoprecipitation and inhibitory assays were utilized to investigate the association of Src-kinases and SH-2 domain-containing phosphatases with Siglec-6. In this study, we show that Siglec-6 is phosphorylated at ITIM and ITIM-like domains by Src family kinases. Phosphorylation of both ITIM and ITIM-like motifs is essential for the recruitment of phosphatases like Src homology region 2 containing protein tyrosine phosphatase 2 (SHP-2), which has downstream signaling capabilities. These findings suggest Siglec-6 as a signaling molecule in human trophoblasts. Further investigation is warranted to determine which signaling pathways are activated downstream to SHP-2 recruitment and how overexpression of Siglec-6 in preeclamptic placentas impacts pathogenesis.


Assuntos
Lectinas , Pré-Eclâmpsia , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Quinases da Família src , Feminino , Humanos , Gravidez , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Fosforilação , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Quinases da Família src/metabolismo , Tirosina/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Lectinas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
12.
Biol Sex Differ ; 13(1): 50, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114567

RESUMO

The fetal placenta is a source of hormones and immune factors that play a vital role in maintaining pregnancy and facilitating fetal growth. Cells in this extraembryonic compartment match the chromosomal sex of the embryo itself. Sex differences have been observed in common gestational pathologies, highlighting the importance of maternal immune tolerance to the fetal compartment. Over the past decade, several studies examining placentas from term pregnancies have revealed widespread sex differences in hormone signaling, immune signaling, and metabolic functions. Given the rapid and dynamic development of the human placenta, sex differences that exist at term (37-42 weeks gestation) are unlikely to align precisely with those present at earlier stages when the fetal-maternal interface is being formed and the foundations of a healthy or diseased pregnancy are established. While fetal sex as a variable is often left unreported in studies performing transcriptomic profiling of the first-trimester human placenta, four recent studies have specifically examined fetal sex in early human placental development. In this review, we discuss the findings from these publications and consider the evidence for the genetic, hormonal, and immune mechanisms that are theorized to account for sex differences in early human placenta. We also highlight the cellular and molecular processes that are most likely to be impacted by fetal sex and the evolutionary pressures that may have given rise to these differences. With growing recognition of the fetal origins of health and disease, it is important to shed light on sex differences in early prenatal development, as these observations may unlock insight into the foundations of sex-biased pathologies that emerge later in life.


Assuntos
Placenta , Caracteres Sexuais , Feminino , Desenvolvimento Fetal , Idade Gestacional , Hormônios/metabolismo , Humanos , Masculino , Placenta/metabolismo , Gravidez
13.
F S Sci ; 3(3): 228-236, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35977803

RESUMO

OBJECTIVE: To present the framework of Stanford Fertility and Reproductive Health's comprehensive reproductive biobanking initiatives and the results of the first year of recruitment. DESIGN: Technical description article. SETTING: Academic fertility center. PATIENT(S): Fertility patients >18 years of age. INTERVENTION(S): Enroll the patients interested in research in biobanking protocols. MAIN OUTCOME MEASURE(S): Patient recruitment and sample inventory from September 2020 to September 2021. RESULT(S): A total of 253 patients have enrolled in the Stanford Fertility and Reproductive Health biobanking initiatives since September 2020. The current inventory consists of 1,176 samples, including serums, plasmas, buffy coats, endometria, maternal deciduae, miscarriage chorionic villi, and human embryos (zygote, cleavage, and blastocyst stages). CONCLUSION(S): This biobanking initiative addresses a critical, unmet need in reproductive health research to make it possible for patients to donate excess embryos and gametes and preserves, for future research, valuable somatic and reproductive tissues that would otherwise be discarded. We present the framework of this biobanking initiative in order to support future efforts of establishing similar biorepositories.


Assuntos
Aborto Espontâneo , Bancos de Espécimes Biológicos , Blastocisto , Feminino , Fertilidade , Humanos , Gravidez , Zigoto
14.
Reprod Sci ; 29(12): 3465-3476, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35697922

RESUMO

Racial disparity exists for hypertensive disorders in pregnancy (HDP), which leads to disparate morbidity and mortality worldwide. The enzyme heme oxygenase-1 (HO-1) is encoded by HMOX1, which has genetic polymorphisms in its regulatory region that impact its expression and activity and have been associated with various diseases. However, studies of these genetic variants in HDP have been limited. The objective of this study was to examine HMOX1 as a potential genetic contributor of ancestral disparity seen in HDP. First, the 1000 Genomes Project (1 KG) phase 3 was utilized to compare the frequencies of alleles, genotypes, and estimated haplotypes of guanidine thymidine repeats (GTn; containing rs3074372) and A/T SNP (rs2071746) among females from five ancestral populations (Africa, the Americas, Europe, East Asia, and South Asia, N = 1271). Then, using genomic DNA from women with a history of HDP, we explored the possibility of HMOX1 variants predisposing women to HDP (N = 178) compared with an equivalent ancestral group from 1 KG (N = 263). Both HMOX1 variants were distributed differently across ancestries, with African women having a distinct distribution and an overall higher prevalence of the variants previously associated with lower HO-1 expression. The two HMOX1 variants display linkage disequilibrium in all but the African group, and within EUR cohort, LL and AA individuals have a higher prevalence in HDP. HMOX1 variants demonstrate ancestral differences that may contribute to racial disparity in HDP. Understanding maternal genetic contribution to HDP will help improve prediction and facilitate personalized approaches to care for HDP.


Assuntos
Heme Oxigenase-1 , Hipertensão Induzida pela Gravidez , Gravidez , Humanos , Feminino , Heme Oxigenase-1/genética , Polimorfismo Genético , Haplótipos , Alelos
16.
Nature ; 602(7898): 689-694, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140405

RESUMO

Liquid biopsies that measure circulating cell-free RNA (cfRNA) offer an opportunity to study the development of pregnancy-related complications in a non-invasive manner and to bridge gaps in clinical care1-4. Here we used 404 blood samples from 199 pregnant mothers to identify and validate cfRNA transcriptomic changes that are associated with preeclampsia, a multi-organ syndrome that is the second largest cause of maternal death globally5. We find that changes in cfRNA gene expression between normotensive and preeclamptic mothers are marked and stable early in gestation, well before the onset of symptoms. These changes are enriched for genes specific to neuromuscular, endothelial and immune cell types and tissues that reflect key aspects of preeclampsia physiology6-9, suggest new hypotheses for disease progression and correlate with maternal organ health. This enabled the identification and independent validation of a panel of 18 genes that when measured between 5 and 16 weeks of gestation can form the basis of a liquid biopsy test that would identify mothers at risk of preeclampsia long before clinical symptoms manifest themselves. Tests based on these observations could help predict and manage who is at risk for preeclampsia-an important objective for obstetric care10,11.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Precoce , Pré-Eclâmpsia , RNA , Pressão Sanguínea , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Feminino , Humanos , Mães , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Gravidez , RNA/sangue , RNA/genética , Transcriptoma
17.
J Matern Fetal Neonatal Med ; 35(25): 5621-5628, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33653202

RESUMO

BACKGROUND: Early identification of pregnant women at risk for preeclampsia (PE) is important, as it will enable targeted interventions ahead of clinical manifestations. The quantitative analyses of plasma proteins feature prominently among molecular approaches used for risk prediction. However, derivation of protein signatures of sufficient predictive power has been challenging. The recent availability of platforms simultaneously assessing over 1000 plasma proteins offers broad examinations of the plasma proteome, which may enable the extraction of proteomic signatures with improved prognostic performance in prenatal care. OBJECTIVE: The primary aim of this study was to examine the generalizability of proteomic signatures predictive of PE in two cohorts of pregnant women whose plasma proteome was interrogated with the same highly multiplexed platform. Establishing generalizability, or lack thereof, is critical to devise strategies facilitating the development of clinically useful predictive tests. A second aim was to examine the generalizability of protein signatures predictive of gestational age (GA) in uncomplicated pregnancies in the same cohorts to contrast physiological and pathological pregnancy outcomes. STUDY DESIGN: Serial blood samples were collected during the first, second, and third trimesters in 18 women who developed PE and 18 women with uncomplicated pregnancies (Stanford cohort). The second cohort (Detroit), used for comparative analysis, consisted of 76 women with PE and 90 women with uncomplicated pregnancies. Multivariate analyses were applied to infer predictive and cohort-specific proteomic models, which were then tested in the alternate cohort. Gene ontology (GO) analysis was performed to identify biological processes that were over-represented among top-ranked proteins associated with PE. RESULTS: The model derived in the Stanford cohort was highly significant (p = 3.9E-15) and predictive (AUC = 0.96), but failed validation in the Detroit cohort (p = 9.7E-01, AUC = 0.50). Similarly, the model derived in the Detroit cohort was highly significant (p = 1.0E-21, AUC = 0.73), but failed validation in the Stanford cohort (p = 7.3E-02, AUC = 0.60). By contrast, proteomic models predicting GA were readily validated across the Stanford (p = 1.1E-454, R = 0.92) and Detroit cohorts (p = 1.1.E-92, R = 0.92) indicating that the proteomic assay performed well enough to infer a generalizable model across studied cohorts, which makes it less likely that technical aspects of the assay, including batch effects, accounted for observed differences. CONCLUSIONS: Results point to a broader issue relevant for proteomic and other omic discovery studies in patient cohorts suffering from a clinical syndrome, such as PE, driven by heterogeneous pathophysiologies. While novel technologies including highly multiplex proteomic arrays and adapted computational algorithms allow for novel discoveries for a particular study cohort, they may not readily generalize across cohorts. A likely reason is that the prevalence of pathophysiologic processes leading up to the "same" clinical syndrome can be distributed differently in different and smaller-sized cohorts. Signatures derived in individual cohorts may simply capture different facets of the spectrum of pathophysiologic processes driving a syndrome. Our findings have important implications for the design of omic studies of a syndrome like PE. They highlight the need for performing such studies in diverse and well-phenotyped patient populations that are large enough to characterize subsets of patients with shared pathophysiologies to then derive subset-specific signatures of sufficient predictive power.


Assuntos
Pré-Eclâmpsia , Proteômica , Feminino , Humanos , Gravidez , Proteômica/métodos , Pré-Eclâmpsia/diagnóstico , Proteoma/metabolismo , Biomarcadores , Proteínas Sanguíneas
18.
Elife ; 102021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910626

RESUMO

Most cell fate trajectories during development follow a diverging, tree-like branching pattern, but the opposite can occur when distinct progenitors contribute to the same cell type. During this convergent differentiation, it is unknown if cells 'remember' their origins transcriptionally or whether this influences cell behavior. Most coronary blood vessels of the heart develop from two different progenitor sources-the endocardium (Endo) and sinus venosus (SV)-but whether transcriptional or functional differences related to origin are retained is unknown. We addressed this by combining lineage tracing with single-cell RNA sequencing (scRNAseq) in embryonic and adult mouse hearts. Shortly after coronary development begins, capillary endothelial cells (ECs) transcriptionally segregated into two states that retained progenitor-specific gene expression. Later in development, when the coronary vasculature is well established but still remodeling, capillary ECs again segregated into two populations, but transcriptional differences were primarily related to tissue localization rather than lineage. Specifically, ECs in the heart septum expressed genes indicative of increased local hypoxia and decreased blood flow. Adult capillary ECs were more homogeneous with respect to both lineage and location. In agreement, SV- and Endo-derived ECs in adult hearts displayed similar responses to injury. Finally, scRNAseq of developing human coronary vessels indicated that the human heart followed similar principles. Thus, over the course of development, transcriptional heterogeneity in coronary ECs is first influenced by lineage, then by location, until heterogeneity declines in the homeostatic adult heart. These results highlight the plasticity of ECs during development, and the validity of the mouse as a model for human coronary development.


Assuntos
Vasos Coronários/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células Endoteliais/metabolismo , Animais , Humanos , Camundongos , RNA-Seq , Análise de Célula Única
19.
PLoS One ; 16(11): e0260094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780565

RESUMO

Preeclampsia is both a vascular and inflammatory disorder. Since the placenta is a conduit for fetal development, preeclampsia should be a presumed cause of adverse infant outcomes. Yet, the relationship of placental pathology, inflammation and neurological outcomes after preeclampsia are understudied. We prospectively examined a cohort of maternal-infant dyads with preeclampsia for maternal inflammatory cytokines at time of preeclampsia diagnosis and delivery, and fetal cord blood cytokines (IL-1ß, IL-6, IL-8, and TNF-α). Placentas were analyzed for inflammatory and vascular pathologies. Neurodevelopmental assessment of infants utilizing the Pediatric Stroke Outcome Measure (PSOM) was conducted at 6-month corrected gestational age. Eighty-one maternal-newborn dyads were examined. Worse neurological outcomes were not associated with elevated maternal / fetal cytokines. Early preterm birth (gestational age ≤ 32 weeks) was associated with worse neurological outcomes at 6-months regardless of maternal/ fetal cytokine levels, placental pathology, or cranial ultrasound findings (OR 1.70, [1.16-2.48], p = 0.006). When correcting for gestational age, elevated IL-6 approached significance as a predictor for worse developmental outcome (OR 1.025 [0.985-1.066], p = 0.221). Pathological evidence of maternal malperfusion and worse outcomes were noted in early preterm, although our sample size was small. Our study did not demonstrate an obvious association of inflammation and placental pathology in preeclampsia and adverse neurodevelopmental outcome at 6-month corrected age but does suggest maternal malperfusion at earlier gestational age may be a risk factor for worse outcome.


Assuntos
Interleucina-6/metabolismo , Placenta/patologia , Pré-Eclâmpsia/imunologia , Nascimento Prematuro/imunologia , Regulação para Cima , Adulto , Feminino , Sangue Fetal/imunologia , Desenvolvimento Fetal , Idade Gestacional , Humanos , Recém-Nascido , Idade Materna , Pessoa de Meia-Idade , Placenta/imunologia , Gravidez , Estudos Prospectivos , Adulto Jovem
20.
Front Immunol ; 12: 714090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497610

RESUMO

Although most causes of death and morbidity in premature infants are related to immune maladaptation, the premature immune system remains poorly understood. We provide a comprehensive single-cell depiction of the neonatal immune system at birth across the spectrum of viable gestational age (GA), ranging from 25 weeks to term. A mass cytometry immunoassay interrogated all major immune cell subsets, including signaling activity and responsiveness to stimulation. An elastic net model described the relationship between GA and immunome (R=0.85, p=8.75e-14), and unsupervised clustering highlighted previously unrecognized GA-dependent immune dynamics, including decreasing basal MAP-kinase/NFκB signaling in antigen presenting cells; increasing responsiveness of cytotoxic lymphocytes to interferon-α; and decreasing frequency of regulatory and invariant T cells, including NKT-like cells and CD8+CD161+ T cells. Knowledge gained from the analysis of the neonatal immune landscape across GA provides a mechanistic framework to understand the unique susceptibility of preterm infants to both hyper-inflammatory diseases and infections.


Assuntos
Biomarcadores , Desenvolvimento Embrionário/imunologia , Fenômenos do Sistema Imunitário , Análise de Célula Única , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Comunicação Celular , Suscetibilidade a Doenças/imunologia , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Imunomodulação , Recém-Nascido , Nascimento Prematuro , Transdução de Sinais , Análise de Célula Única/métodos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...